Efficient Multiple Object Tracking Using Mutually Repulsive Active Membranes
نویسندگان
چکیده
منابع مشابه
Efficient Multiple Object Tracking Using Mutually Repulsive Active Membranes
Studies of social and group behavior in interacting organisms require high-throughput analysis of the motion of a large number of individual subjects. Computer vision techniques offer solutions to specific tracking problems, and allow automated and efficient tracking with minimal human intervention. In this work, we adopt the open active contour model to track the trajectories of moving objects...
متن کاملMultiple Object Tracking by Efficient Graph Partitioning
In this paper, we view multiple object tracking as a graph partitioning problem. Given any object detector, we build the graph of all detections and aim to partition it into trajectories. To quantify the similarity of any two detections, we consider local cues such as point tracks and speed, global cues such as appearance, as well as intermediate ones such as trajectory straightness. These diff...
متن کاملActive Object Tracking using Image Mosaic Background
In this paper, we propose a panorama-based object tracking scheme for wide-view surveillance systems that can detect and track moving objects with a pan-tilt camera. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion informatin. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect t...
متن کاملMultiple Object Tracking Using Local Motion Patterns
This paper presents an algorithm for multiple-object tracking without using object detection. We concentrate on creating long-term trajectories for unknown moving objects by using a model-free tracking algorithm. Each individual object is tracked by modeling the temporal relationship between sequentially occurring local motion patterns. The algorithm is based on shape and motion descriptors of ...
متن کاملObject Tracking Using Multiple Neuromorphic Vision Sensors
In this paper we show how a combination of multiple neuromorphic vision sensors can achieve the same higher level visual processing tasks as carried out by a conventional vision system. We process the multiple neuromorphic sensory signals with a standard auto-regression method in order to fuse the sensory signals and to achieve higher level vision processing tasks at a very high update rate. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2013
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0065769